Title: | Various Linear Mixed Model Analyses |
---|---|
Description: | This package offers three important components: (1) to construct a use-defined linear mixed model, (2) to employ one of linear mixed model approaches: minimum norm quadratic unbiased estimation (MINQUE) (Rao, 1971) for variance component estimation and random effect prediction; and (3) to employ a jackknife resampling technique to conduct various statistical tests. In addition, this package provides the function for model or data evaluations.This R package offers fast computations for large data sets analyses for various irregular data structures. |
Authors: | Jixiang Wu |
Maintainer: | Jixiang Wu <[email protected]> |
License: | GPL-3 |
Version: | 2.0.0 |
Built: | 2025-03-09 02:39:26 UTC |
Source: | https://github.com/cran/minque |
This package offers three important components: (1) to construct a use-defined linear mixed model, (2) to employ one of linear mixed model approaches: minimum norm quadratic unbiased estimation (MINQUE) (Rao, 1971) for variance component estimation and random effect prediction;(3) to employ a jackknife resampling technique to conduct various statistical tests; and (4) to conduct various model evaluations. This R package offers fast computations for large data sets analyses for various irregular data structures.
Package: | minque |
Type: | Package |
Version: | 2.0 |
Date: | 2019-12-18 |
License: | GPL-3 |
An overview of how to use the package, including the most important functions
Jixiang Wu, Associate Professor of Quantitative Genetics/Biostatistics, \Jixiang Wu <[email protected]>
Miller, R. G. 1974. The jackknife - a review. Biometrika, 61:1- 15.
Patterson, H. D. and Thompson, R. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika, 58: 545-554.
Rao, C.R. 1971. Estimation of variance and covariance components-MINQUE theory. J Multiva Ana 1:19
Rao, C. R. and Kleffe, J. 1980. Estimation of variance components. In Handbook of Statistics. Vol. l: 1-40. Krishnaiah, P. R. ed. New York. North-Holland.
Searle, S. R., Casella, G. and McCulloch, C. E. 1992. Variance Components. John Wiley & Sons, Inc. New York.
Wu J (2012) GenMod: An R package for various agricultural data analyses. ASA, CSSA, and SSSA 2012 International Annual Meetings, Cincinnati, OH, p 127
Wu J., Bondalapati K., Glover K., Berzonsky W., Jenkins J.N., McCarty J.C. 2013. Genetic analysis without replications: model evaluation and application in spring wheat. Euphytica. 190:447-458
Zhu J. 1989. Estimation of Genetic Variance Components in the General Mixed Model. Ph.D. Dissertation, NC State University, Raleigh, U.S.A
Zhu J. 1993. Methods of predicting genotype value and heterosis for offspring of hybrids. (Chinese). Journal of Biomathematics, 8(1): 32-44
This data set contains boll retention of 10 cotton plants for 5 genotypes and 13 nodes. This data set can be analyzed in many ways: factorial factor design (genotype and position) or as split-plot design. For example, this data set can be analyzed by user-defined model as shown in the example.
data(brate)
data(brate)
A data frame with 338 observations on the following 5 variables.
Year
year of 2009
Geno
genotypes from 1 to 5
Pos
plant nodes from 5 to 17
Rep
field blocks from 1 to 4
Brate
mean boll retention for the first position over 10 plants
No other details are needed
No references or URLs available.
No reference available
library(minque) data(brate) head(brate) brate$Geno=factor(brate$Geno) brate$Pos=factor(brate$Pos) brate$Rep=factor(brate$Rep) res=lmm(Brate~1|Geno*Pos+Rep,data=brate) res$Var res$FixedEffect res$RandomEffect res=lmm.jack(Brate~1|Geno*Pos+Rep,data=brate,JacNum=10,JacRep=1,ALPHA=0.05) res$Var res$PVar res$FixedEffect res$RandomEffect ## end
library(minque) data(brate) head(brate) brate$Geno=factor(brate$Geno) brate$Pos=factor(brate$Pos) brate$Rep=factor(brate$Rep) res=lmm(Brate~1|Geno*Pos+Rep,data=brate) res$Var res$FixedEffect res$RandomEffect res=lmm.jack(Brate~1|Geno*Pos+Rep,data=brate,JacNum=10,JacRep=1,ALPHA=0.05) res$Var res$PVar res$FixedEffect res$RandomEffect ## end
Twentype four cotton genotypes were evaluated under two locations at the Mississippi State University Research Farm.
data(cot)
data(cot)
A data frame with 288 observations on the following 7 variables.
LOC
location
Geno
genotypes
REP
field blocks
BN
Boll number
BS
Boll size
LP
Lint percentage
LY
Lint yield
No other details are needed
Not available
To be added
##Sample R codes used to analyze the data set: cot library(minque) data(cot) names(cot) cot$Geno=factor(cot$Geno) cot$Loc=factor(cot$LOC) cot$Rep=factor(cot$REP) res=lmm(LY~1|Geno*Loc+Loc:Rep,data=cot) res$Var res$FixedEffect res$RandomEffect res=lmm.jack(LY~1|Geno*Loc+Loc:Rep,data=cot,JacNum=10,JacRep=1,ALPHA=0.05) res$Var res$PVar res$FixedEffect res$RandomEffect ##End
##Sample R codes used to analyze the data set: cot library(minque) data(cot) names(cot) cot$Geno=factor(cot$Geno) cot$Loc=factor(cot$LOC) cot$Rep=factor(cot$REP) res=lmm(LY~1|Geno*Loc+Loc:Rep,data=cot) res$Var res$FixedEffect res$RandomEffect res=lmm.jack(LY~1|Geno*Loc+Loc:Rep,data=cot,JacNum=10,JacRep=1,ALPHA=0.05) res$Var res$PVar res$FixedEffect res$RandomEffect ##End
An R function for linear mixed model analysis with REML and/or MINQUE approaches
lmm(formula,data = list(), method = NULL, ALPHA = NULL)
lmm(formula,data = list(), method = NULL, ALPHA = NULL)
formula |
A linear mixed model formula. |
data |
Data frame. It can be default. |
method |
The default linear mixed model approach is MINQUE. Users can choose both or one of two linear mixed model approaches, REML and MINQUE. |
ALPHA |
A preset nominal probability level. |
No data frame is needed when more than one response variables are analyzed
Return list of simulated results for variance components
Jixiang Wu <[email protected]>
Miller, R. G. 1974. The jackknife - a review. Biometrika, 61:1- 15.
Rao, C.R. 1971. Estimation of variance and covariance components-MINQUE theory. J Multiva Ana 1:19
Rao, C. R. and Kleffe, J. 1980. Estimation of variance components. In Handbook of Statistics. Vol. l: 1-40. Krishnaiah, P. R. ed. New York. North-Holland.
Searle, S. R., Casella, G. and McCulloch, C. E. 1992. Variance Components. John Wiley & Sons, Inc. New York.
Wu J (2012) GenMod: An R package for various agricultural data analyses. ASA, CSSA, and SSSA 2012 International Annual Meetings, Cincinnati, OH, p 127
Wu J., Bondalapati K., Glover K., Berzonsky W., Jenkins J.N., McCarty J.C. 2013. Genetic analysis without replications: model evaluation and application in spring wheat. Euphytica. 190:447-458
Zhu J. 1989. Estimation of Genetic Variance Components in the General Mixed Model. Ph.D. Dissertation, NC State University, Raleigh, U.S.A
library(minque) data(ncii) res=lmm(Yld~1|Female*Male+Rep,data=ncii) res$Var res$FixedEffect res$RandomEffect #End
library(minque) data(ncii) res=lmm(Yld~1|Female*Male+Rep,data=ncii) res$Var res$FixedEffect res$RandomEffect #End
Sometimes users may need run some simulations for a given data structure and/or a model. This function will give users the information used for simulation.
lmm.check(formula, data = list())
lmm.check(formula, data = list())
formula |
A linear mixed model formula |
data |
A data frame used for modelling. It can be default |
Return the information that will be used to preset values for simulation
comp1 |
Number of variance components including one for random error |
comp2 |
Names for all variance components not including the one for random error |
comp3 |
Levels of effects for each fixed effect component |
comp4 |
Names of all fixed effects |
Jixiang Wu <[email protected]>
library(minque) data(ncii) ncii$Female=factor(ncii$Female) lmm.inf=lmm.check(Yld~Female|Female*Male+Rep,data=ncii) lmm.inf #End
library(minque) data(ncii) ncii$Female=factor(ncii$Female) lmm.inf=lmm.check(Yld~Female|Female*Male+Rep,data=ncii) lmm.inf #End
An R function for linear mixed model analysis with integration two linear mixed model approaches (REML and MINQUE) and a jackknife technique.
lmm.jack(formula, data=list(),method = NULL, JacNum = NULL, JacRep = NULL, ALPHA = NULL)
lmm.jack(formula, data=list(),method = NULL, JacNum = NULL, JacRep = NULL, ALPHA = NULL)
formula |
A linear mixed model formula. |
data |
A data frame used for analysis,it can be default. |
method |
The default linear mixed model approach is MINQUE. Users can choose both or one of two linear mixed model approaches, REML and MINQUE. |
JacNum |
The groups of jackknife to be used. The default number is 10. |
JacRep |
The times of jackknife process being repeated. The default is 1 |
ALPHA |
The nomial alpha value being used for statistical tests. The default value is 0.05 |
Return a list of matrices each including mean estimated variance components, standard error, and power
Jixiang Wu <[email protected]>
Miller, R. G. 1974. The jackknife - a review. Biometrika, 61:1- 15.
Rao, C.R. 1971. Estimation of variance and covariance components-MINQUE theory. J Multiva Ana 1:19
Rao, C. R. and Kleffe, J. 1980. Estimation of variance components. In Handbook of Statistics. Vol. l: 1-40. Krishnaiah, P. R. ed. New York. North-Holland.
Searle, S. R., Casella, G. and McCulloch, C. E. 1992. Variance Components. John Wiley & Sons, Inc. New York.
Wu J (2012) GenMod: An R package for various agricultural data analyses. ASA, CSSA, and SSSA 2012 International Annual Meetings, Cincinnati, OH, p 127
Wu J., Bondalapati K., Glover K., Berzonsky W., Jenkins J.N., McCarty J.C. 2013. Genetic analysis without replications: model evaluation and application in spring wheat. Euphytica. 190:447-458
Zhu J. 1989. Estimation of Genetic Variance Components in the General Mixed Model. Ph.D. Dissertation, NC State University, Raleigh, U.S.A
library(minque) data(ncii) res=lmm.jack(Yld~1|Female*Male+Rep,data=ncii, JacNum=10,JacRep=1,ALPHA=0.05) res$Var res$PVar res$FixedEffect res$RandomEffect #End
library(minque) data(ncii) res=lmm.jack(Yld~1|Female*Male+Rep,data=ncii, JacNum=10,JacRep=1,ALPHA=0.05) res$Var res$PVar res$FixedEffect res$RandomEffect #End
An R function for linear mixed model analysis with integration two linear mixed model approaches (REML and MINQUE) and a permutation test.
lmm.perm(formula, data = list(), method = NULL, PermNum = NULL)
lmm.perm(formula, data = list(), method = NULL, PermNum = NULL)
formula |
A linear mixed model formula. |
data |
Data frame. It can be default. |
method |
The default linear mixed model approach is MINQUE. Users can choose both or one of two linear mixed model approaches, REML and MINQUE. |
PermNum |
Permutation number. The default number is 100 |
Return a list of matrices each including mean estimated variance components, standard error, and power
Jixiang Wu <[email protected]>
Miller, R. G. 1974. The jackknife - a review. Biometrika, 61:1- 15.
Rao, C.R. 1971. Estimation of variance and covariance components-MINQUE theory. J Multiva Ana 1:19
Rao, C. R. and Kleffe, J. 1980. Estimation of variance components. In Handbook of Statistics. Vol. l: 1-40. Krishnaiah, P. R. ed. New York. North-Holland.
Searle, S. R., Casella, G. and McCulloch, C. E. 1992. Variance Components. John Wiley & Sons, Inc. New York.
Wu J (2012) GenMod: An R package for various agricultural data analyses. ASA, CSSA, and SSSA 2012 International Annual Meetings, Cincinnati, OH, p 127
Wu J., Bondalapati K., Glover K., Berzonsky W., Jenkins J.N., McCarty J.C. 2013. Genetic analysis without replications: model evaluation and application in spring wheat. Euphytica. 190:447-458
Zhu J. 1989. Estimation of Genetic Variance Components in the General Mixed Model. Ph.D. Dissertation, NC State University, Raleigh, U.S.A
library(minque) data(ncii) res=lmm.perm(Yld~1|Female*Male+Rep,data=ncii) res #End
library(minque) data(ncii) res=lmm.perm(Yld~1|Female*Male+Rep,data=ncii) res #End
An R function for linear mixed model simulation with generated data set and a given model.
lmm.simu(formula, method = NULL, ALPHA = NULL)
lmm.simu(formula, method = NULL, ALPHA = NULL)
formula |
A linear mixed model formula. |
method |
The default linear mixed model approach is MINQUE. Users can choose both or one of two linear mixed model approaches, REML and MINQUE. |
ALPHA |
A preset nominal probability level. |
No data frame is needed when more than one response variables are analyzed
Return list of simulated results for variance components
Jixiang Wu <[email protected]>
Miller, R. G. 1974. The jackknife - a review. Biometrika, 61:1- 15.
Rao, C.R. 1971. Estimation of variance and covariance components-MINQUE theory. J Multiva Ana 1:19
Rao, C. R. and Kleffe, J. 1980. Estimation of variance components. In Handbook of Statistics. Vol. l: 1-40. Krishnaiah, P. R. ed. New York. North-Holland.
Searle, S. R., Casella, G. and McCulloch, C. E. 1992. Variance Components. John Wiley & Sons, Inc. New York.
Wu J (2012) GenMod: An R package for various agricultural data analyses. ASA, CSSA, and SSSA 2012 International Annual Meetings, Cincinnati, OH, p 127
Wu J., Bondalapati K., Glover K., Berzonsky W., Jenkins J.N., McCarty J.C. 2013. Genetic analysis without replications: model evaluation and application in spring wheat. Euphytica. 190:447-458
Zhu J. 1989. Estimation of Genetic Variance Components in the General Mixed Model. Ph.D. Dissertation, NC State University, Raleigh, U.S.A
library(minque) data(ncii) lmm.inf=lmm.check(Yld~1|Female*Male+Rep,data=ncii) lmm.inf ##there are five variance components v=c(20,20,20,20,20) ##there are five variance components b=as.vector(100) ##there is only population mean as fixed effect Y=lmm.simudata(Yld~1|Female*Male+Rep,data=ncii,v=v,b=b,SimuNum=50) Female=factor(ncii$Female) Male=factor(ncii$Male) Rep=factor(ncii$Rep) res=lmm.simu(Y~1|Female*Male+Rep) res #End
library(minque) data(ncii) lmm.inf=lmm.check(Yld~1|Female*Male+Rep,data=ncii) lmm.inf ##there are five variance components v=c(20,20,20,20,20) ##there are five variance components b=as.vector(100) ##there is only population mean as fixed effect Y=lmm.simudata(Yld~1|Female*Male+Rep,data=ncii,v=v,b=b,SimuNum=50) Female=factor(ncii$Female) Male=factor(ncii$Male) Rep=factor(ncii$Rep) res=lmm.simu(Y~1|Female*Male+Rep) res #End
An R function for linear mixed model simulation with integration two linear mixed model approaches (REML and MINQUE) and a jackknife technique.
lmm.simu.jack(formula, method = NULL, JacNum = NULL, JacRep = NULL, ALPHA = NULL)
lmm.simu.jack(formula, method = NULL, JacNum = NULL, JacRep = NULL, ALPHA = NULL)
formula |
A linear mixed model formula. |
method |
The default linear mixed model approach is MINQUE. Users can choose both or one of two linear mixed model approaches, REML and MINQUE. |
JacNum |
The groups of jackknife to be used. The default number is 10. |
JacRep |
The times of jackknife process being repeated. The default is 1 |
ALPHA |
The nomial alpha value being used for statistical tests. The default value is 0.05 |
Return a list of matrices each including mean estimated variance components, standard error, and power
Jixiang Wu <[email protected]>
Miller, R. G. 1974. The jackknife - a review. Biometrika, 61:1- 15.
Rao, C.R. 1971. Estimation of variance and covariance components-MINQUE theory. J Multiva Ana 1:19
Rao, C. R. and Kleffe, J. 1980. Estimation of variance components. In Handbook of Statistics. Vol. l: 1-40. Krishnaiah, P. R. ed. New York. North-Holland.
Searle, S. R., Casella, G. and McCulloch, C. E. 1992. Variance Components. John Wiley & Sons, Inc. New York.
Wu J (2012) GenMod: An R package for various agricultural data analyses. ASA, CSSA, and SSSA 2012 International Annual Meetings, Cincinnati, OH, p 127
Wu J., Bondalapati K., Glover K., Berzonsky W., Jenkins J.N., McCarty J.C. 2013. Genetic analysis without replications: model evaluation and application in spring wheat. Euphytica. 190:447-458
Zhu J. 1989. Estimation of Genetic Variance Components in the General Mixed Model. Ph.D. Dissertation, NC State University, Raleigh, U.S.A
library(minque) data(ncii) lmm.inf=lmm.check(Yld~1|Female*Male+Rep,data=ncii) lmm.inf ##there are five variance components v=c(20,20,20,20,20) ##there are five variance components b=as.vector(100) ##there is only population mean as fixed effect Y=lmm.simudata(Yld~1|Female*Male+Rep,data=ncii,v=v,b=b,SimuNum=50) Female=factor(ncii$Female) Male=factor(ncii$Male) Rep=factor(ncii$Rep) res=lmm.simu.jack(Y~1|Female*Male+Rep) res #End
library(minque) data(ncii) lmm.inf=lmm.check(Yld~1|Female*Male+Rep,data=ncii) lmm.inf ##there are five variance components v=c(20,20,20,20,20) ##there are five variance components b=as.vector(100) ##there is only population mean as fixed effect Y=lmm.simudata(Yld~1|Female*Male+Rep,data=ncii,v=v,b=b,SimuNum=50) Female=factor(ncii$Female) Male=factor(ncii$Male) Rep=factor(ncii$Rep) res=lmm.simu.jack(Y~1|Female*Male+Rep) res #End
An R function to generate a simulated data set with given parameters, model, and data structure.
lmm.simudata(formula, data = list(), v, b, SimuNum = NULL)
lmm.simudata(formula, data = list(), v, b, SimuNum = NULL)
formula |
A linear mixed model formula |
data |
A data frame. It can be default. |
v |
A vector of preset variance components |
b |
A vector of present fixed effects. |
SimuNum |
The number of simulations. The default number is 200. |
Return a simulated data set which is a matrix.
Jixiang Wu <[email protected]>
Rao, C.R. 1971. Estimation of variance and covariance components-MINQUE theory. J Multiva Ana 1:19
Rao, C. R. and Kleffe, J. 1980. Estimation of variance components. In Handbook of Statistics. Vol. l: 1-40. Krishnaiah, P. R. ed. New York. North-Holland.
Searle, S. R., Casella, G. and McCulloch, C. E. 1992. Variance Components. John Wiley & Sons, Inc. New York.
Wu J (2012) GenMod: An R package for various agricultural data analyses. ASA, CSSA, and SSSA 2012 International Annual Meetings, Cincinnati, OH, p 127
Wu J., Bondalapati K., Glover K., Berzonsky W., Jenkins J.N., McCarty J.C. 2013. Genetic analysis without replications: model evaluation and application in spring wheat. Euphytica. 190:447-458
Zhu J. 1989. Estimation of Genetic Variance Components in the General Mixed Model. Ph.D. Dissertation, NC State University, Raleigh, U.S.A
library(minque) data(ncii) lmm.inf=lmm.check(Yld~1|Female*Male+Rep,data=ncii) lmm.inf ##there are five variance components v=c(20,20,20,20,20) ##there are five variance components b=as.vector(100) ##there is only population mean as fixed effect Y=lmm.simudata(Yld~1|Female*Male+Rep,data=ncii,v=v,b=b,SimuNum=50) #End
library(minque) data(ncii) lmm.inf=lmm.check(Yld~1|Female*Male+Rep,data=ncii) lmm.inf ##there are five variance components v=c(20,20,20,20,20) ##there are five variance components b=as.vector(100) ##there is only population mean as fixed effect Y=lmm.simudata(Yld~1|Female*Male+Rep,data=ncii,v=v,b=b,SimuNum=50) #End
Maize variety trial with two years and multi-locations in China.
data(maize)
data(maize)
A data frame with 260 observations (rows) on the following 4 variables (columns).
Cultivar
cultivar names
Year
testing year
Location
testing locations
Yld
maize yield
No other details available
Fan X.M., Kang M.S., Chen H.M., Zhang Y.D., Tan J., Xu C.X. (2007) Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal.99:220-228
Fan X.M., Kang M.S., Chen H.M., Zhang Y.D., Tan J., Xu C.X. (2007) Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal.99:220-228
library(minque) data(maize) #names(maize) res=lmm(Yld~1|Cultivar*Year+Cultivar*Location+Year*Location,data=maize) res$Var res$FixedEffect res$RandomEffect res=lmm.jack(Yld~1|Cultivar*Year+Cultivar*Location+Year*Location, data=maize,JacNum=10,JacRep=1,ALPHA=0.05) res$Var res$PVar res$FixedEffect res$RandomEffect ##End
library(minque) data(maize) #names(maize) res=lmm(Yld~1|Cultivar*Year+Cultivar*Location+Year*Location,data=maize) res$Var res$FixedEffect res$RandomEffect res=lmm.jack(Yld~1|Cultivar*Year+Cultivar*Location+Year*Location, data=maize,JacNum=10,JacRep=1,ALPHA=0.05) res$Var res$PVar res$FixedEffect res$RandomEffect ##End
A genetic data set can be analyzed by ANOVA or MIQNUE approaches.
data(ncii)
data(ncii)
A data frame with 60 observations on the following 4 variables.
Female
female parents
Male
male parents
Rep
replications
Yld
yield
No other details available
Not available
To be added
library(minque) data(ncii) res=lmm(Yld~1|Female*Male+Rep,data=ncii) res$Var res$FixedEffect res$RandomEffect res=lmm.jack(Yld~1|Female*Male+Rep,data=ncii, JacNum=10,JacRep=1,ALPHA=0.05) res$Var res$PVar res$FixedEffect res$RandomEffect
library(minque) data(ncii) res=lmm(Yld~1|Female*Male+Rep,data=ncii) res$Var res$FixedEffect res$RandomEffect res=lmm.jack(Yld~1|Female*Male+Rep,data=ncii, JacNum=10,JacRep=1,ALPHA=0.05) res$Var res$PVar res$FixedEffect res$RandomEffect